\(\int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx\) [519]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 96 \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {a} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

[Out]

2*B*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+2*a*A*sin(d
*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3034, 4100, 3886, 221} \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {2 \sqrt {a} B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d} \]

[In]

Int[Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[a]*B*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d
 + (2*a*A*Sin[c + d*x])/(d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3034

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p, Int[(a + b*Csc[e + f*x])^m*((
c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d
, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && IntegerQ[n])

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\left (B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {\left (2 B \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d} \\ & = \frac {2 \sqrt {a} B \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.60 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.98 \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {2 \sqrt {\cos (c+d x)} \left (A \sqrt {1-\sec (c+d x)}-B \arcsin \left (\sqrt {\sec (c+d x)}\right ) \sqrt {\sec (c+d x)}\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1-\sec (c+d x)}} \]

[In]

Integrate[Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*(A + B*Sec[c + d*x]),x]

[Out]

(2*Sqrt[Cos[c + d*x]]*(A*Sqrt[1 - Sec[c + d*x]] - B*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Sec[c + d*x]])*Sqrt[a*(1 +
 Sec[c + d*x])]*Tan[(c + d*x)/2])/(d*Sqrt[1 - Sec[c + d*x]])

Maple [A] (verified)

Time = 7.18 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.70

method result size
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}\, \left (2 A \sin \left (d x +c \right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}-B \arctan \left (\frac {-\cos \left (d x +c \right )+\sin \left (d x +c \right )-1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-B \arctan \left (\frac {\cos \left (d x +c \right )+\sin \left (d x +c \right )+1}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right )}{d \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(163\)

[In]

int((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(a*(1+sec(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)*(2*A*sin(d*x+c)*(-1/(cos(d*x+c)+1))^(1/2)-B*arctan(1/2*(-cos(d*x
+c)+sin(d*x+c)-1)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))-B*arctan(1/2*(cos(d*x+c)+sin(d*x+c)+1)/(cos(d*x+c)
+1)/(-1/(cos(d*x+c)+1))^(1/2)))/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 298, normalized size of antiderivative = 3.10 \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\left [\frac {4 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (B \cos \left (d x + c\right ) + B\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {2 \, A \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (B \cos \left (d x + c\right ) + B\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{d \cos \left (d x + c\right ) + d}\right ] \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*(4*A*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*cos(d*x + c) + B)*sqrt(
a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt(cos(d*x +
 c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(d*cos(d*x + c) + d), (2*A*s
qrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (B*cos(d*x + c) + B)*sqrt(-a)*arctan(
2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d
*x + c) - 2*a)))/(d*cos(d*x + c) + d)]

Sympy [F]

\[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)**(1/2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))*(A + B*sec(c + d*x))*sqrt(cos(c + d*x)), x)

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 262 vs. \(2 (82) = 164\).

Time = 0.41 (sec) , antiderivative size = 262, normalized size of antiderivative = 2.73 \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\frac {4 \, \sqrt {2} A \sqrt {a} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + B \sqrt {a} {\left (\log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )\right )}}{2 \, d} \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(4*sqrt(2)*A*sqrt(a)*sin(1/2*d*x + 1/2*c) + B*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2
*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2
*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) +
 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin
(1/2*d*x + 1/2*c) + 2)))/d

Giac [F]

\[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int { {\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {a \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

sage0*x

Mupad [F(-1)]

Timed out. \[ \int \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} (A+B \sec (c+d x)) \, dx=\int \sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \]

[In]

int(cos(c + d*x)^(1/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^(1/2)*(A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(1/2), x)